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Abstract. The PageRank equation computes the importance of pages
in a web graph relative to a single random surfer with a constant tele-
portation coefficient. To be globally relevant, the teleportation coefficient
should account for the influence of all users. Therefore, we correct the
PageRank formulation by modeling the teleportation coefficient as a ran-
dom variable distributed according to user behavior. With this correc-
tion, the PageRank values themselves become random. We present two
methods to quantify the uncertainty in the random PageRank: a Monte
Carlo sampling algorithm and an algorithm based the truncated poly-
nomial chaos expansion of the random quantities. With each of these
methods, we compute the expectation and standard deviation of the
PageRanks. Our statistical analysis shows that the standard deviation
of the PageRanks are uncorrelated with the PageRank vector.

1 Introduction

In its purest form, the PageRank model ignores the text underlying pages on the
web and creates an irreducible, aperiod Markov chain model for a hypothetical
random surfer on the link structure of the web [1]. Each entry of the stationary
distribution measures the global importance of a page.

The PageRank model, however, is not unique. A PageRank value depends
upon a parameter α which controls how the putative random surfer “teleports”
around the web. Upon visiting a website, the random surfer chooses an outlink
uniformly at random with probability α and chooses a page according to a
prior distribution with probability 1 − α. This paper focuses on the modeling
assumptions for the value of α and suggests a new model for PageRank that
fixes a modeling error in the original PageRank formulation.

To continue our discussion, we must define the PageRank model and estab-
lish some notation. Let W be an adjacency matrix for a web graph, wi,j = 1
when node i links to node j. We set P to be a fully row-stochastic random walk
transition matrix on W. The matrix P has dangling nodes corrected in an ar-
bitrary way (for example, see [2,3]) such that Pe = e where e is the vector of
all ones. Let 1 − α be the teleportation probability and v be the personalization
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distribution. The PageRank model requires that 0 ≤ α < 1, vi ≥ 0, and vT e = 1.
With these definitions, the PageRank vector x(α) is the unique eigenvector with
||x(α)||1 = 1 satisfying

[
αPT + (1 − α)veT

]
x(α) = x(α) (1)

or equivalently [4,5] the solution of the linear system

(
I − αPT

)
x(α) = (1 − α)v. (2)

The key error in the PageRank model is that it only accounts for a single
surfer because it only permits a single value of α. The choice of α is quite myste-
rious. Most researchers take α = 0.85 [6]. Recently, Avrachenkov et al. suggested
choosing α = 1/2 [7]. Their suggestion follows from graph theoretic properties
of the PageRank solution vector as a function of α. If we believe the PageRank
random surfer model, then α should be estimated from Internet usage logs, so
that α = E[A] where A is a random variable representing the teleportation pa-
rameter for each user. We are not aware of any studies that attempt to determine
α using this methodology.

However, assuming α = E[A] does not yield the “correct” PageRank vector
This fact follows because in general E[x(A)] �= x(E[A]). Intuitively, this issue
arises because the PageRank model consolidates everyone into a single user. Ap-
pendix A demonstrates a formal counterexample. A more realistic model would
consider that each user should have a small contribution to the final PageRank
values.

To reiterate, computing x(E[A]) does not yield a PageRank vector that ex-
presses all of the users. Instead, we propose using E[x(A)] as a new PageRank
vector that accurately models the underlying user population.

While our model for PageRank using a random parameter better represents
the reality of random surfers, we would not expect the rankings generated by the
model to be qualitatively different from those generated by the approximation
of using α = E[A]. We expect E[x(A)] ≈ x(E[A]) for “reasonable” distributions
of A. Our results confirm this expectation, which justifies use of the PageRank
vector as a global ranking for all users.

However, by modeling each component of the PageRank vector as a random
variable, we gain a distinct advantage when quantifying the importance of a
page. Namely, we can compute the standard deviation of each PageRank value
with respect to the distribution of A. The standard deviation is a key tool in
uncertainty quantification and allows us to examine the pages most sensitive to
changes in PageRank based on the underlying distribution of A. In the results
section, we employ the standard deviation of the PageRank vector to generate
rankings that are uncorrelated with the original PageRank vector. Uncorrelated
vectors are important because they provide additional useful input to a machine
learning framework for generating a web search ranking function.
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2 Choice of Distribution

One of the mysteries in the original PageRank model was the choice of α. In
our new model, we replace α with a random variable A. Immediately, we face
a new question: what should the distribution of A be? This question is much
easier to answer! We estimate a value α̂i from usage statistics for each user i
and compute the resulting discrete distribution. Unfortunately, this represents
a daunting computational and statistical analysis task.

We do not attempt to determine the underlying discrete distribution and pro-
ceed to the limiting case where A is a continuous random variable with support
in the interval [0, 1]. There are two distributions that potentially model the user
behavior of interest: the uniform distribution over [l, r] with 0 ≤ l < r ≤ 1 and
the Beta distribution with parameters a and b, a, b ≥ −1. The density functions
are

fU [l,r](x) =
1

r − l
I[l,r](x) and fBeta(a,b)(x) =

xb(1 − x)a

B(a + 1, b + 1)
I[0,1](x),

where B(x, y) = Γ (x)Γ (y)
Γ (x+y) and Γ (x) is the Euler Γ function. The Beta density

becomes the uniform density with l = 0 and r = 1 when a = b = 0. (This
form of the Beta density may differ from other presentations. In particular, the
Beta distribution implemented in Matlab assumes the uniform distribution when
a = b = 1.)

3 A Consequence of the Modeling Change

Recall that our proposed change in the PageRank model is to replace the de-
terministic parameter α with a random variable A and to use E[x(A)] instead
of x(E[A]) as the PageRank vector. One attractive feature of this change is
that using E[x(A)] incorporates more influence from longer paths in the graph.
Appendix A derives (5),

E[x(A)] =
∞∑

n=0

E[An − An+1]PT n
v.

The coefficient E[An − An+1] expresses the weight placed on paths of length n
in the graph. Following Baeza-Yates et al., we call these coefficients the path
damping coefficients [8]. Figure 1 shows these coefficients as functions of n along
with the path damping coefficients in the deterministic case. Appendix A, then,
demonstrates that the TotalRank model proposed in that paper is equivalent to
using E[x(A)] in our model with A distributed uniformly over [0, 1].

4 Computing the Solution

Given the randomness in the PageRank model introduced by the random pa-
rameter A, our objective is to quantify the uncertainty in the solution x(A)
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Fig. 1. Different choices of the underlying distribution of A have significant conse-
quences for the influence of long paths in the final PageRank vector. From formula (5)
the influence of a path of length n is E[An − An+1] which we call the path damping
coefficient. Assuming that A is uniform puts the most weight on long paths. The three
distributions displayed in this plot satisfy E[A] = 0.85. All the methods put similar
weight on paths up to length 10.

of the system. In concrete terms, this amounts to computing the mean of the
stationary distribution E[x(A)] as well as its standard deviation Std[x(A)].

4.1 Monte Carlo Approach

One straightforward way to compute these quantities is to use a Monte Carlo
approach. First generate M realizations of A from a chosen distribution, and
then solve each resulting PageRank problem. With the M different realizations
of xi(A), i = 1, . . . , M , we can compute unbiased estimates for E[x(A)] and
Var[x(A)] with the formulas

E[x(A)] ≈ 1
M

M∑

i=1

xi ≡ μ̂x, Std[x(A)] ≈

√√
√√ 1

M − 1

M∑

i=1

(xi − μ̂x)2

from [9]. Unfortunately, as with any Monte Carlo method, these estimates con-
verge as 1/

√
M [10], which makes this approach prohibitively expensive for large

systems such as the web graph.

4.2 The Polynomial Chaos Approach

A more efficient way to compute E[x(A)] and Std[x(A)] — and the one that we
advocate in this paper — employs a technique known as the stochastic Galerkin
method. This technique utilizes a specific representation of the random param-
eter A and random response vector x(A) called the polynomial chaos expansion
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(PCE). The PCE expresses the random quantities as an infinite series of or-
thogonal polynomials that take a vector of random variables as arguments. This
representation has its roots in the work of Wiener [11] who expressed a Gaus-
sian process as an infinite series of Hermite polynomials. In the early 1990s,
Ghanem and Spanos [12] truncated Wiener’s representation to finitely many
terms and used this truncated PCE as a primary component of their stochastic
finite element method; this truncation made computations possible. In 2002, Xiu
and Karniadakis [13] expanded this method to non-Gaussian processes via the
more general Wiener-Askey scheme of orthogonal polynomials. The use of the
stochastic Galerkin method has become fashionable in the uncertainty quantifi-
cation community as a technique for measuring the effect of random inputs on
partial differential equation models [14,15,16]. This paper presents a straight-
forward application of this technique to a linear system with a single random
parameter.

To introduce the method, let {Ψk(ξ(ω))}, k ∈ N denote a set of orthogonal
polynomials where ξ(ω) is a vector of i.i.d. random variables. We use the de-
pendence on ω to represent a random quantity. Assume {Ψk(ξ(ω))} have the
following properties:

E[Ψ0] = 1, E[Ψk] = 0 for k > 0, E[ΨjΨk] = δjk for j, k ≥ 0

where δjk is the Kronecker delta. The PCE of a random quantity u(ω) is given
by

u(ω) =
∞∑

k=0

ukΨk(ξ(ω))

where {ui} are the PCE coefficients. By the Cameron-Martin theorem [17], this
series converges in an L2 sense, i.e.

E

⎡

⎣
(

u −
N∑

k=0

ukΨk(ξ(ω))

)2⎤

⎦ → 0

as N → ∞. The L2 convergence of this expansion motivates truncating the
series at a finite number of terms for the sake of computation. Thus we can
approximate u with the finite series

u(ω) ≈
N∑

k=0

ukΨk(ξ(ω)).

Then the problem of computing u(ω) transforms into the problem of finding the
coefficients of its truncated PCE. From this point onward, we drop the explicit
dependence on ω in our notation.

Since our particular model has only one random variable, we can fully account
for this single random dimension by letting ξ have only one component, which
we denote by ξ = ξ. For the random parameter A and response quantity x in
our model, we can write their respective PCEs as
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A =
∞∑

k=0

AkΨk(ξ), x =
∞∑

k=0

xkΨk(ξ),

For A ∼ Beta(a, b), we can achieve exponential convergence in the coefficients
xk by choosing {Ψk} to be the 1-D Jacobi polynomials with parameters a and b
[13]. Note that when a = b = 0, A ∼ U [0, 1] and the Jacobi polynomials reduce
to the Legendre polynomials.

Now we substitute these representations into our model,
(

I −
∞∑

k=0

AkΨk(ξ)PT

)( ∞∑

k=0

xkΨk(ξ)

)

=

(

1 −
∞∑

k=0

AkΨk(ξ)

)

v.

To make this problem amenable to computation, we truncate the PCEs to N
terms,

(

I −
N∑

k=0

AkΨk(ξ)PT

)(
N∑

k=0

xkΨk(ξ)

)

=

(

1 −
N∑

k=0

AkΨk(ξ)

)

v.

In the next section we perform a convergence study on the order of the expansion
for our particular application, Fig. 2.

With the distribution of A known explicitly, we can solve directly for Ak.
By multiplying both sides of the truncated PCE representation of A by Ψj and
taking the expectation, the orthogonality of {Ψk} gives the formula

Aj =
E[AΨj(ξ)]
E[Ψj(ξ)2]

, j = 0, . . . , N.

From this formula, we have that A0 = E[A] and Aj = 0 for j ≥ 2. Thus our
system reduces to

(I − (A0 + A1Ψ1)PT )

(
N∑

k=0

xkΨk(ξ)

)

= (1 − (A0 + A1Ψ1))v.

Multiplying both sides by Ψj and taking the expectation, the orthogonality of
{Ψk} leaves

E[Ψ2
j ]I −

N∑

k=0

E[(A0 + A1Ψ1)ΨjΨk]PT xk

= ((1 − A0) E[Ψj ] − A1 E[ΨjΨ1])v

(3)

for j = 0 . . .N . Therefore we have N + 1 coupled linear systems to solve for
xj . Note that the dimension of this larger system is N + 1 times the dimension
of P.

Once we solve for the PCE coefficients xj , we can compute the mean of the
PageRank vector,
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E[x] = E

⎡

⎣
N∑

j=0

xjΨj

⎤

⎦ = x0 E[Ψ0]︸ ︷︷ ︸
=1

+
N∑

j=0

xj E[Ψi]︸ ︷︷ ︸
=0

= x0.

To compute the standard deviation, we first compute the variance.

Var[x] = E[(x − E[x])2]

= E

⎡

⎢
⎣

⎛

⎝

⎛

⎝
N∑

j=0

xjΨj

⎞

⎠ − x0

⎞

⎠

2
⎤

⎥
⎦

=
N∑

j=1

x2
j E[Ψ2

j ]; (by orthogonality)

and then Std[x] =
√

Var[x] is computed element-wise.

5 Datasets

Our experimental datasets came from four sources [18,19,20,21]. We downloaded
and modified two datasets compressed using the Webgraph framework [22]. Ta-
ble 1 summarizes our datasets.

From the webbase dataset, we extracted the web graph corresponding to the
http://cs.stanford.edu host and computed the largest strongly connected
component of this graph. We also computed and used the largest strongly con-
nected component of the cnr-2000 graph. The wikipedia graph is discussed in
Sect. 5.1, and the us2004 comes from [20]. Each of the graphs stanford-cs, cnr-
2000, and wikipedia is a largest strongly connected component and has a natural
random walk

P = D−1W, (4)

Here D is the diagonal matrix of outdegrees for each node, and Pe = e. The
us2004 graph was not strongly connected and we added self loops to all dan-
gling nodes before computing P according to (4). The graphs for stanford-cs and
wikipedia, prior to extracting the largest connected component, are available in
the University of Florida Sparse Matrix Collection as Gleich/wb-cs-stanford
and Gleich/wikipedia-20051105 [23].

5.1 Wikipedia

On a semi-regular basis, Wikipedia provides a dump of their database. We col-
lected the dump from November 5, 2005 [21] and processed the results into a
graph by identifying all links between Wikipedia articles in the text. We decided
to remove many pages that were not articles because we wanted the results to be
true to the underlying Encyclopedic nature of Wikipedia and felt that pages in
the “User” and “User talk” categories did not meet that requirement. The cate-
gories we kept were “Category” and “Portal” because they represent overviews

http://cs.stanford.edu
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Table 1. The datasets used in this paper vary in scale over three orders of magnitude.
The term id(v) is used to represent the indegree of a vertex. Each of the first three
graphs listed is a strongly connected component from a larger graph. The final graph
is not strongly connected and has dangling nodes adjusted by adding a self-loop.

Name |V| |E| max id(v) Source
stanford-cs 2,759 13,895 340 [18,22]
cnr-2000 112,023 1,646,332 18,235 [19,22]
wikipedia 1,103,453 18,245,140 71,524 Sect. 5.1
us2004 6,411,252 23,940,956 116,393 [20]

N stanford-cs cnr-2000
0 3.29 × 10−2 3.20 × 10−2

1 1.48 × 10−4 1.47 × 10−4

2 7.56 × 10−8 7.54 × 10−8

3 4.46 × 10−12 4.47 × 10−12

4 2.31 × 10−17 2.75 × 10−17

10−16

10−8

100

0 1 2 3 4

Values of
∥
∥E[x(N+1)(A)] − E[x(N)(A)]

∥
∥

1

Fig. 2. The order study for the polynomial chaos expansion shows that a fourth order
expansion is sufficient and that the convergence of the expansion is independent of the
graph size; the plots are indistinguishable and we have plotted the data from cnr-2000

of different areas of the Encyclopedia. Finally, we removed all pages in the graph
not in the largest strongly connected component. The result of this processing
is our wikipedia dataset.

6 Convergence Results

We conducted simple convergence studies with A ∼ Beta(2, 16) on our two
small datasets, stanford-cs and cnr-2000, that motivate choices used on the re-
sults for our larger datasets. From Figs. 2 and 3, we observed both the predicted

0
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+
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−

µ
(M

)
x

‖ 1
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M

Fig. 3. Monte Carlo sampling theory predicts that the estimates converge proportional
to 1/

√
M . In this figure, we demonstrate this convergence on our problem. The dashed

curve is 0.15/
√

M where the scaling was matched by hand to the underlying data.
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exponential convergence of the PCE coefficients and the characteristic slow con-
vergence of the Monte Carlo algorithm. Therefore, we use a fourth order PCE
truncation (N = 4) in the our subsequent computations and do not consider
Monte Carlo as a feasible computational algorithm. Appendix B describes the
implementation for these experiments.

7 Results and Discussion

Tables 2-5 present our main results. In the experiments, we computed E[x(A)]
and Std[x(A)] under the following modeling assumptions: (1) A = 0.85 is de-
terministic; (2) A has a Beta distribution with a = 2, b = 16; and (3) A is
distributed uniformly over [0.7, 1]. We chose these two distributions because
E[A] = 0.85 in both cases. The two graphs used for experiments are wikipedia
and us2004. In the remainder of this section, we will adopt the notation that
x̂α = x(0.85), x̂Beta = E[x(A)] where A ∼ Beta(2, 16), and x̂U = E[x(A)] where
A ∼ U [0.7, 1]. Similarly, ŝBeta = Std[x(A)] and ŝU = Std[x(A)] for the respective
distributions.

Table 2 presents the time required for the major computational task in each
evaluation. For the PageRank problem with a deterministic α, the major com-
putational task is the iterative method used to solve the linear system (2). For
the problem with a random variable A, the major computational task is solving
the coupled linear systems for the coefficients of the PCE (3). The time required
to compute the PCE coefficients is approximately 100 times larger than the time
required to compute the PageRank vector. This implies that using our codes, we
have an allowance of only 100 Monte Carlo samples before the PCE approach
becomes more efficient. The computational codes for the PCE coefficients are not
optimized. Therefore, using well known results and techniques from numerical
linear algebra (for example [24]) will yield a substantial improvement in these
computational times.

Next, we evaluated the top 10 pages for each of the ordering induced by x̂α,
x̂Beta, and x̂U . Unsurprisingly, these groups of pages are identical. We evaluate
the difference between these three vectors in Tab. 3 using the 1-norm, ∞-norm,
and Kendall-τ correlation coefficient. The results in the table clearly demonstrate
that while E[x(A)] �= x(E[A]), E[x(A)] ≈ x(E[A]). From the strong τ correlation
coefficients, the rankings induced by these vectors are nearly indistinguishable.
These results justify using a deterministic approximation of PageRank to the
underlying model where A is a random variable.

The next set of our results concerns the standard deviation of the PageR-
ank vector with respect to the distribution of A. Table 4 displays the top 10
pages in each graph according to the PageRank vector and the top 10 pages
with highest standard deviation under both distributions. The results first show
that countries and years make up the most important pages in Wikipedia ac-
cording to the PageRank model. Next, the pages with highest standard de-
viation are the category pages if A is sampled from a Beta distribution. This
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Table 2. The time required to solve the major computational task in each model

wikipedia us2004
A = α = 0.85 60.4 sec. 25.2 sec.
A ∼ Beta(2, 16) 2210 sec. 3248 sec.
A ∼ U [0.7, 1.0] 1936 sec. 2712 sec.

Table 3. In this table, x̂α represents x(0.85), x̂U represents E[x(A)], A ∼ U [0.7, 1],
and x̂Beta = E[x(A)],A ∼ Beta(2, 16). We present the difference between each of
these vectors in the 1-norm, ∞-norm, and Kendall-τ correlation coefficient. These
results show that the PageRank vector with a deterministic α is extremely close to the
expected PageRank vectors for random variable A. In particular, the τ results indicate
the rankings induced by each of the vectors are almost identical.

wikipedia us2004
y, z ||y − z||1 ||y − z||∞ τ (y,z) ||y − z||1 ||y − z||∞ τ (y,z)

x̂α, x̂U 0.04996 0.00018 0.99997 0.04996 0.00013 0.99999
x̂α, x̂Beta 0.03211 0.00012 0.99702 0.03209 8 ×10−5 0.99872
x̂U , x̂Beta 0.01792 5 ×10−5 0.99705 0.01807 5 ×10−5 0.99873

implies that these pages have the highest uncertainty in their ranking. A ma-
chine learning framework could theoretically use this additional information
with user reviews of pages to generate more accurate rankings. Alternatively,
pages with high standard deviation might make good suggestions if a search
algorithm got a second chance to present results, given that the first set were
unsatisfactory. In the second case, category pages are a logical set of sugges-
tions. We were unable to determine any pattern to the pages with highest
standard deviation if A is sampled from a uniform distribution. For the us2004
graph, the pages with highest PageRank tend to have high standard deviation
as well.

We now attempt to analyze the standard deviation vectors using the Kendall-
τ ranking correlation. Table 5 presents the correlation coefficients. The major
result of this table is that the standard deviation vector for both distributions on
the wikipedia graph is uncorrelated with any of the PageRank vectors whereas
the standard deviation for both distributions on the us2004 graph are anti-
correlated. When we evaluate the rank correlation in the us2004 graph with
dangling nodes removed, then the rank correlation is positive. We believe that
the difference between these results is a consequence of the structural differences
between the graphs. The wikipedia graph is the largest strongly connected com-
ponent of a larger graph and there are no dangling nodes. We believe that the
dangling nodes in the us2004 graph are the cause of the strong anti-correlation
between the standard deviation and the PageRank vector. The considerable
change in the rank-correlation after removing the dangling nodes supports this
hypothesis.
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Table 4. This table compares the 10 best pages from each of the two experimental
graphs with the 10 pages of highest standard deviation under each distributions for the
random variable A. While each set of pages is significantly different in the wikipedia
graph, the corresponding sets for the us2004 graph are similar.

wikipedia
Top 10 by PageRank Largest std for Beta(2, 16) Largest std for U[0.7, 1.0]
United States Category:Wikiportals 2000
Race (U.S. Census) Category:Politics Square kilometer
United Kingdom Category:Categories Population density
France Category:Culture Race (U.S. Census)
2005 Category:Geography Per capita income
2004 Category:Countries Poverty line
2000 Category:Human societies Census
Canada Race (U.S. Census) Marriage
England Category:Categories by country Square mile
Category:Categories by country Category:North American countries Category:Categories by country

us2004
Top 10 by PageRank Largest std for Beta(2, 16) Largest std for U[0.7, 1.0]
lxr.linux.no/ lxr.linux.no/ lxr.linux.no/
kernel.org/ kernel.org/ kernel.org/
examples.oreilly.com/linuxdrive2/ examples.oreilly.com/linuxdrive2/ examples.oreilly.com/linuxdrive2/
www.fsmlabs.com/[...]/openrtlinux/ www.fsmlabs.com/[...]/openrtlinux/ www.fsmlabs.com/[...]/openrtlinux/
www.datadosen.se/jalbum www.datadosen.se/jalbum www.datadosen.se/jalbum
linguistics.buffalo.edu/ssila/index.htm www.iub.edu/ www.indiana.edu/copyright.html
www.iub.edu/ www.indiana.edu/& www.indiana.edu/
www.uiowa.edu/ ournews/index.html www.indiana.edu/copyright.html registrar.indiana.edu/[...]/index.html
catalog.arizona.edu/ www.indiana.edu/ www.uky.edu/
validator.w3.org/check/referer www.uiowa.edu/õurnews/index.html www.arizona.edu/

Table 5. This table shows the Kendall-τ ranking correlation coefficient between the
standard deviation of the PageRank vector under both distributions for A and the
expectations of the PageRank vector. See the text for the interpretation of the vectors in
the table. For both the uniformly and Beta distributed random variables, the standard
deviation of the wikipedia vector is uncorrelated with the PageRank vector itself. In
contrast, the standard deviation of the us2004 vectors are anti-correlated with the
PageRank vectors. The label us2004nd indicates the vector from the us2004 graph
restricted to the non-dangling pages. On the non-dangling pages, we observe a more
mild positive correlation between the PageRank vector and the standard deviation.

wikipedia us2004 us2004nd
τ (̂sU , x̂α) -0.0032 -0.7846 0.4611
τ (̂sU , x̂U ) -0.0032 -0.7846 0.4611
τ (̂sU , x̂Beta) -0.0020 -0.7851 0.4625
τ (̂sBeta, x̂α) 0.0488 -0.7909 0.5920
τ (̂sBeta, x̂U ) 0.0488 -0.7909 0.5920
τ (̂sBeta, x̂Beta) 0.0021 -0.7918 0.5933

8 Conclusions and Future Work

The PageRank model for computing a global importance vector over web pages
makes a critical modeling error by assuming that all users can be represented by
a single teleportation parameter. We propose a new model for PageRank where
the teleportation coefficient is a random variable supported on the interval [0, 1].
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Using a truncated polynomial chaos expansion to represent the random tele-
portation coefficient and PageRank, we compute the expectation and standard
deviation of the PageRank vector for two distributions of the random variable
in the PageRank model. Our results indicate two important conclusions. First,
the expectation of the PageRank model assuming a random variable for the
teleportation coefficient yields almost the same ranking as the PageRank model
assuming a deterministic teleportation coefficient. This result justifies using the
deterministic approximation as a global ranking vector for all users. Second,
the standard deviation of the PageRank vector can be uncorrelated with the
PageRank vector itself.

There is a significant amount of remaining work to fully investigate the use of
the new model for PageRank. First, we need to investigate other distributions
for the teleportation parameter, particularly distributions based on statistical
analysis of actual usage data. Also, we suspect that the time required to com-
pute the PCE coefficients can be significantly reduced. Additionally, we need
to continue to investigate the impact of dangling nodes and strongly connected
components on the standard deviation of the PageRank. We hypothesize that
there is a significant relationship between these factors.
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A A Counterexample

We demonstrate E[x(A)] �= x(E[A]) with a counterexample. Set

P =

⎛

⎝
0 1/2 1/2
0 0 1
0 0 1

⎞

⎠ ,

and v =
[
1/3 1/3 1/3

]T . If A is a uniform random variable on [0, 1], then E[A] =
1/2 and

x(E[A]) =
[
1/6 5/24 5/8

]T
.

For the random variable model, the computations are more complicated.

E[x(A)] = E

[ ∞∑

n=0

(AnPT n
)(1 − A)v

]

=
∞∑

n=0

(E[An] − E[An+1])PT n
v.

(5)

http://en.wikipedia.org/wiki/Wikipedia:Database_download
http://www.cise.ufl.edu/research/sparse/matrices/
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In the first step, we used the Neumann series for the inverse of the matrix
I−APT . Fubini’s theorem then justifies interchanging the sum and expectation
because the inner quantity is always bounded and positive. The raw moments
of the uniform distribution are E[An] = 1

n+1 and consequently,

E[x(A)] =
∞∑

n=0

(
1

n+1 − 1
n+2

)
PT n

v =
∞∑

n=0

1
(n+1)(n+2)P

T n
v.

For n ≥ 2, PT nv =
[
0 0 1

]T

E[x(A)] = 1
2v + 1

6P
Tv +

[
0 0

∑∞
n=2

1
(n+1)(n+2)

]T

=
[
1/6 7/36 23/36

]T
.

In this case, the first component of the vector is identical, but the second two
components show a small change from the modeling difference.

B Engineering Details

Our Matlab implementations, which we provide for download from
http://www.stanford.edu/∼dgleich/pagerankpce, fall into three categories:
PageRank codes, polynomial chaos codes, and large scale linear system codes.

PageRank codes. Our PageRank codes use a Gauss-Seidel algorithm [24] to solve
the linear system formulation of the PageRank problem. We wrote a mex func-
tion to implement the Gauss-Seidel iteration efficiently in a Matlab code. The
convergence metric for the PageRank computation was

||αPT x + (1 − α)v − x||1 ≤ δ

where δ = 10−10 for the PageRank vectors discussed in the results section and
δ = 10−8 for the PageRank vectors used to form the Monte Carlo approximation.

Polynomial chaos codes. In the polynomial chaos approach, we must integrate
products of the basis polynomials. We computed these quantities exactly with
Matlab’s symbolic toolbox. We used the output of these symbolic computations
when forming the large linear system to solve for the PCE coefficients xj .

Large scale linear systems. We employed two linear system solvers to compute
the solution for the large systems generated by the polynomial chaos approach.
For the results in Sect. 6 we solved the final linear systems using the SOR
algorithm with ω = 1.05. For the results in Sect. 7, Matlab did not have sufficient
memory to construct the large linear system in memory. We represented these
matrices implicitly as linear operators and used the Jacobi algorithm to solve
the linear systems until the relative residual was smaller than 10−10.

http://www.stanford.edu/~dgleich/pagerankpce
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